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Abstract

We review the derivation of moment equations which include the effects of
space charge and dispersion in bends first presented in ref. [1]. These equa-
tions generalize the familiar envelope equations to include the dispersive effects
of bends. We review the application of these equations to the calculation of the
change in emittance resulting from a sharp transition from a straight section to a
bend section, using an energy conservation constraint. Comparisons of detailed
9D and 3D simulations of intense beams in rings using the WARP code (refs.
9,3]) are made with results obtained from the moment equations. We also com-
pare the analysis carried out in ref. [1], to more recent analyses, refs. [4,5]. We
further examine sef-consistent distributions of beams in bends and discuss the
relevance of these distributions to the moment equation formulation.

Introduction

There are many applications in which beams having non-negligible space
charge forces are transported through bends, In heavy ion fusion (HIF), recir-
culating induction accelerators (recirculators), with large tune depressions, an
with rapid acceleration through resonances, are being considered to ignite iner-
tial confinement fusion targets. Even in linac approaches to HIF, designs of the
final transport to the farget usually include transport through 180 degrees or
more of bend section. In some Acclerator Production of Tritium designs, a final
bent transport section is being considered as part of an upgrade option. For the
application of studying high energy density in matter, a beam pulse in a stor-
age ring will be longitudinally compressed, reaching tune shifts for short periods
much larger than allowed by the Laslett-tune shift limit. Even in traditional
synchrotrons and storage rings obeying the Laslett limit, it is useful to have a
framework in which space charge and dispersion are both included.

In the HIF application, the normalized emittance of the beam must remain
small to be able to focus the beam on a small spot. The growth of the normalized
einittance of an accelerated beam is also of interest for many other applications in
which high brightness is required. The concept of transverse energy conservation
was used in ref. [1] to study emittance growth in bends. This built upon earlier
studies which have calculated changes in emittance also using a transverse energy
constraint. For example, emittance growth associated with non-uniform space-
charge distributions was examined in refs. [8]- {10]. Emittance growth due ta
initial beam displacements and mismatches with and without space-charge and
momentum spread has been studied in, refs. [11-13,17], and references therein.

Tn the work reviewed here the beams propagate in continuous or alternating
gradient focusing channel, with phase advances that are depressed due to space
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charge. In addition, bends are present, which provide a displacement in the
center of oscillation for ions which are off of the design momentum. Moment
equations are employed to estimate emittance growth arising from the transition
from straight sections to bends. (See also ref. [14] for an estimate of emittance
growth due to the fransitions in the absence of space charge.) On a transition from

- abend to a straight section, or from a straight section to a bend, if the transition

is sufficiently sharp, the beam becomes mismatched, We assume that small non-
linear forces act to phase mix particles, and we find the asymptotic emitiance of
such a beam. Further, if we assume that the process of phase mixing is completed
before the beam goes through another straight/bend transition, we may calculate
the emittance growth through a “racetrack” configuration consisting of two 180°
bends and two straight sections, even without a detailed knowledge of the rate
at which the phase mixing occurs.

Model Equations of Motion

The force equation in the radial {(bend) direction using cylindrical coordinates,
(p.0,7) is: :

- ‘l.?2 9,9 . .4
i— 7"—-: Frang = vakzne(p — po) + vk (p— < p >) : (1)

Here, p is the radial coordinate of a particle in a bend, ¢ is the azimuthal coor-
dinate, y is the vertical coordinate and vy = pff is the azimuthal velocity, and k2,
is a defocusing constant of the assumed linear space charge force in the radial
direction (defined below). For simplicity, non-relativistic kinematics are assumed.
Also, pg is the nominal radius of a particle with the azimuthal component of the
design momentum pp and design velocity v = fe.

The component of the bending force Fy.qq in the radial direction is given by:

_{ qe By (magnetic bends)
Fhand = (Ama) {Ep (electrie bends) @)

Here g is the jon charge state (41 for protons), e is the proton charge in Coulombs,
A is the jon mass in amu, m, is the atomic mass unit in kg. B, is the vertical
bendililg field (for magnetic bends) or £, is the radial electric field (for electric
bends).

We let ¢ = p— pp and define the increment in path length aldng the design
orbit ds = pdf. The equations of motion are then given by,

oo 5+ R - ) @
L] 7 ah )
V' = =k y+ k(v —ve) - _1;_(;}’*_!’). {4)
kf:r = 5 V I‘L ) ] i) ; k? = - I\- ] L] oy (5)
2AA® + (A2 A7) ) v = A+ (ARAP)TE

Here, z is the in-plane deviation from the design orbit and y is the vertical co-
ordinate in a particular transverse slice of the beam. The heam travels in the
+s direction, and prime (*) indicates derivative with respect to s; kgg, and kgq,
can represent either alternating gradient focusing (if they are s dependent) or
they can represent the focusing effects in the smooth approximation, in which
case, kgo: = kpoy = oo/2L where og is the undepressed phase advance, and L
is the half-lattice period. Dispersion effects enter through the term =,,, where
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om = (1/k3o.0)(f2/p0) for magnetic focusing and zm = (2/k3q-p0)(6p/po) for electric
focusing. The quantity ép/po is the fractional difference between the longitudi-
nal momentum of a particle and the design momentum gy, and K = 22 /{F*AL)
is the perveance. Here I, = 4megmae®/e is the characteristic proton current (=31
MA). Finally, for generality, we have included an unspecified external non-linear
potential hy that is a function of =y, and possibly s.

We adopt the notation of ref. [1], throughout this paper in which the quantity
A is reserved for the two argument operator in which centroid quantities are
subtracted off: Aab =< ab> — < a><b> (e Ar? =< z* >~ <z >?), where <>
indicates average over all particles in a slice; z, =< = >, and y. =< y >.

These equations are identical to the equations found in ref. [1], except here
we no longer assume kgoz, kgoy, and po to be independent of s, nor do we require
ksoe = kgoy. 1n deriving the moment equations in ref. [1}, no use was made of the
assumed constancy or equality of kgp. and kso, mor the constancy of pg, so the

eneralization simply amounts to a relabeling of the focusing constants.

Eqs. (3) and (4) represent, in an approximate way, the effects of: linear
focusing, linear space charge defocusing, dispersion in a bend, and external non-
Lnearities in the focusing field. The physical approximations that have been
made include the following: (1) Egs. (3) and (4) have been linearized in the small
quantities kgoz, kgoy, and #p/ps. (The non-linear term by, has also been included in
some of the derivations). (2) The non-linearity is small: (k| << Wk3g,2%), W50, 271
(Terms which are non-linear in 5p/py, such as ksozfp/po, have been neglected.) (3)
Space charge forces depend only on lowest order moments. (We have used the KV
formula for the electrostatic potential, which is equivalent to assuming uniform
density elliptical beam. Centroid position and semi-major axes are, however,
allowed to vary with s). (4) The beam is coasting: {po, #, and ép are constants).
(5) The beam is non-relativistic: (8 <<1).

Let f(z,z', v, y’,%%,s) = dN/dzdx"dydy‘d%ﬂ- where dN is the number of particles
within incremental phase volume dazda'dydy’ d32. For the model equations (3)-(5)
the Vlasov equation becomes:

2 2 iy 8
(“‘kﬁuyy'{'k;y(y_yc)_%"y_! 3_;,7 =0
(6)

0F , (BF (i (n ya? Oy OF , ,8f
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The average of a variable ¢ over the continuous distribution is given by:
<t>(5) ,=_fdmfdm'fdyfdy’fd;f%&f(m,r',y,y’,%ﬁ,s)/]\f,
where \
‘ N=[dezfde' [dyfdy [df(z,",m ¥, L2, 5).
Following ref. [7], we take all second order moments of the Vlasov eq. (6),

yielding eight (first-order with respect to s) coupled moment equations:

d Az? = 2Azs’

da’
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-c%-A: ? = 2Ayy'
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Similarly, the first order moments of eq. (6) yield the following:

cﬁa:c =z

Lol = kg e+ kfpy < Tm > — < Ghar 5

£y =1

U = ~joy¥e— < Tt > (8) .

Note that if by =0, eq. (7) forms a closed sets of 8 equations, and eq. (8) forms
two sets of two closed equations. If hy # 0, egs. (7) and (8) form the beginning
of an infinite hierarchy of moment equations.

Transverse Energy Conservation

For the case of alternating gradient focusing, and when the bends occupy only
a fraction of the lattice, the focusing constants k3oss kg, and the bend radius of

curvature pp are dependent on s. This s-dependence of the external forces implies
that there will not be a constant energy-like quantity. However, as in ref. 1], if

kposikgoy, and py are constants representing average quantities, we may define a
transverse energy H: :

2H = kjoc As® + ko, AP + Ax™ + AY? - 2o Aze, — K In{(A?)Y? + (Ag?)?)
+2 < hor > +hEgeze + kg Uz + 20+ y2 (9)
Use of egs. (7) and (8) shows that:

d d .
H—SH = Eg( hat > (1[])

Thus if hy; is not a function of s, # is an invariant.

Emittance Growth
We define separate » and y emittances: ,

€2 = 16{Az?Ax" - Azz'),; g = 16(A"Ay"® — Ayy™). (11)

Using egs. (7), the following emittance evolution equations can be derived:

d Pl L] a ah ) n ah
o= 32kzo{ Az Ar't — Azz'Azzn, ) + 82{A(z 6:::1 JAzz — Aa:“A(z’-B—:I)) (12)
d , _ 8hn ' 2 + Bhny 7

Thus the emittance would be constant if non-linearities were not present (k. = 0)
and the momentum spread were absent (z., = 0 for all particles.) Eqs. (12) and
(13) are valid for both continuous and alternating gradient focusing.
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: Equilibrinm Beam
Tn the continuous focusing approximation, the left-hand-sides of egs. (7) and
(8) can be set to zero to obtain the following equilibrium (constant moment)
conditions:
Az = (k;—;[):.' - ksa:)Am'-' - k;r;u:A:!::r:m + A(E%IHL)
Ay? = (kgo, — k3y) A" + AlwTgt

3 Az Bk

A:l?:l':m - "’gnz‘&im éinm"ﬁy')

Hoxz

mc=<mm>-;:5u—<§aﬁgl>
— 1 Bhint
Ve =TEL S e
Azz' = Ayy' = Ac'zy, = A(z'f-’g;L) = Ay %) =0
al =y, =0 (14)

Assuming that k= z. =y, =0 the transverse energy (9) in equilibrium (# = Hy)
reduces to:
. Ak Az

2Hyy = (2"’30: — ko)A + (Zk;-;ﬂy — kA - k3oe — k3
0z AT

~ K In({Az?)"/? + (Ay*)?) (15)

Note that for a given H.,, the ratio of Az* to Ay? is still unspecified. A further
assumption is required to specify the final state of the beam. It s often reasonable
to assume that transverse energy equipartition results in a beam in which the two
transverse temperatures are equal, 1.e. Az = Ay”. (Note that we have implicitly
assumed that the timescale for complete equipartition [Az"? = Ay® = A(ép/po)?] 15
much larger than timescales of interest.) The condition that Az = Ay® can be
expressed as a relation between Ay® and Az

] (k,'“;n, - k?z) b kgo:: a
Ay = 5 — Az — — Az 16
(kﬁﬂy - ka‘y (kaﬂ: - k;z) m ( )
When kgor = kgoy = kpo and Az2, << Az? this result reduces to:
AP = As® — 2kEAad f (K2 +43,)) (17)
where k* = k3, ~ K/(1Az°).
Rings

Suppose a beam is in equilibrium in a straight section, and then enters a
continuous bend (i.e. a ring). If the lattice parameters (such as the bend radius
of curvature) abruptly change to new values, the beam becomes mismatched
to the bend. Physically, particles that are not on the design momentum for
the bend initially become spatially separated, creating non-linear space-charge
forces, allowing phase mixing of the coherent mismatch oscillations until a new
equilibrium is reached. For concreteness, we consider a lattice in which kgor =
kgoy = ko, and also assume that kge is the same both in the straight section
and in the bend section. Thus, in this example, we assume the contribution to
focusing from the bends is included in kg We assume that the initial beam
(subscript 0) is matched to the straight section. Thus Ayj = Az, and Az = Auf
= kIAz3, and all other moments are equal to zero. The initial transverse energy
satisfles 2Hp = (2kF, + 2k°)Axg — K in[2(Az3)!/?). To calculate the final equilibrium
beam parameters, we set the final transverse energy equal to the initial transverse
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energy, and stmultaneously solve this constraint with the equalized temperature
constraint, eq. (16). Thus, there are two equations in two unknowns (Az? and
Ay?), yielding the final equilibrium values of Az and Ay® in the bend. From the
equilibrium values (eq. 14), all other second order moments may be calculated,
including the emittance.

In ref. [3], comparisons of the results of the continuous focusing theory were
made to 2D WARP PIC simulations of the transition from straight to bend for
parameters of a small recirculator experiment being built at Lawrence Livermore
National Laboratory. The relevant parameters of the simulation were: the ion
species was singly charged Potassium, (mass 39), at an energy of 80 kV, and a
current of 2 mA, leading to a perveance K of 3.54 x 10-%. The average focusing
constants are kpg. = kggy, = 1.89 m~!, corresponding to a phase advance of 78
degrees and half-lattice period L = 0.36 m. The average bend radius of curvature
is py = 2.29 m, The normalized emittances e,; = 7fe; and €ny = 7Bey (where v is
the Lorentz factor of the beam) were both set to 0.03 mm-mrad at injection into
the ring. §p/porms = 7.2 x 10~* was assumed.
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Figure 1. Comparison of WARP simulations with model results (from ref. [3D.
z and y emittance evolution in a ring geometry, after initialization in a straight
section, as calculated by WARP, by direct integration of the moment equations
(Moment Theory, no damping) and the asymptotic value using energy conserva-’
tion.

Reprinted from Nuclear Instruments and Methods in Physics Research 4, J. J. Bamard, ©1998 with ﬁenﬁissiun
from Elsevier Science.

In Figure 1, (from ref. [3]), we plot the WARP simulations of the normalized
z and y emittances over 3 laps of the small recirculator. In addition, we plot
the initial evolution of the emittance as predicted by direct integration of the
moment equafions, (indicated as Moment Theory (no damping)) in the fgure.
The simulations include all of the details of alternating gradient lattice including
fringe fields and image effects, as well as the non-liness space charge fields, The
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theory calculations use only the uniform focusing and bending approximation.
Also, because the moment equations do not include nop-linearities and the as-
sociated non-linear phase mixing, the amplitude of the z-emittance oscillations
remain constant and the y-emittance does not grow. In the simulations, small
non-linearities cause the oscillations to damp and the y-emittance to gradually
grow closer to the z-emittance. Although direct integration of the moment equa-
Tons does not capture the damping of the oscillations in the z-emittance or the

owth in the y-emittance, the moment equations accurately predict the initial
amplitude and frequency of the oscillations. Also shown on the figure are the
final equilibrium results (indicated as x-limit theory, and y-limit theory) calcu-
lated using the prescription indicated above, which is based on using the moment
equations to calculate the transverse emergy and assuming equality of the final
velocity spreads in the = and y directions. As can be seen, the theory closely
predicts the asymptotic values of the = and y emittances as found by the fully 3D
simulations, and also captures the simulation result that the y-emiftance equi-
lIibrates to a value less than the z-emittance. Simulations of the University of
Maryland Ring (ref. [15]) shows a similar increase in emittance with an ultimate

saturation.

0.25 T T T T
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Figure 2. Comparison of WARP simulations with model results (from ref. {3]).

z and y emittance after the 90 degree bend and asymptotic results as a function of

the fractional momentum spread (in percentage), after initialization in a straight

section, as calculated by WARP, by direct integration of the moment equations
2 and - theory 90° bend) and the asymptotic value using energy conservation
z- and y- limit theory).

In Figure 2, (from ref. [3]), we plot the emittance at the end of ninety degrees
of bend and also the asymptotic values of the emittance, all as a function of
(A(ﬁp/pu)n)ll ? = §p/porms. This quantity is largely unknown in the experiment, and
it could range anywhere from the value expected from accelerative cooling (see e.g.
ref. [16]) of the longitudinal momentum spread induced by the ~0.1 eV ion source,
which results in a spread of order 10-%, or if the fractional error in the injector
diode voltage errors is as large as 0.005 (at high enough frequency), the resulting
induced fractional momentum spread, §p/purme would be as large as 2.5 x 1072,
A third possible source of momentum spread comes from instabilities associated




with an anisotropic velocity distribution (ref. [22]). I this instability heats the
longitudinal component until it is of the same temperature as the transverse, the
resulting moment spread would be bp/pgem, = ¢, [A{A2) 2 2 79 % 10-4, (For a more
complete discussion cf. ref. [3]). As can be seen from the plot, direct integration
of the moment equations closely captures the simulation value of the emittance
after 90 degrees (during the initial emittance oscillation) and closely matches the
mean rise in emittance and difference between the r and y emittances,

When kgue = ksoy, and when the change in emittance is much less than the

original emittance, one may aralytically estimate the change in emittance squared
in an abrupt transition from straight to bend:

Blo(2k3, + k) kS
P =16 T ARA2 PG Z 16 ARALL (18
€ — o k"(klﬁu-l-k') Lo AT, € — &y k'!(kéu"i'k'!) Talxy, (18)

Egs. (18) are valid only for small changes in emittance, and so are not applicable
to the parameters of figure 1.

Racetracks

In a recirculator that is composed of two 180° bends connected by two straight
sections in the shape of a racetrack, if phase mixing is rapid enough the equilib-
rinm can be reached before each transition. Transverse energy is conserved as a
beam enters a bend from a straight, but since the beam acquires a finite Azz,, as
it finds equilibrium in the bend, the transverse energy will be discontinnous enter-
ing a straight from a bend, (where p, becomes infinite, and hence Axz,, abruptly
changes to zero.) The quantities Az, Az, Ay?, Ay are, of course, continuous at
all transitions. A new value of ¥ is calculated which is again constant through-
out the straight section. At the beginning of the bend the process repeats. In
Fig. (3), we have applied this formulation to a small scale racetrack recirculator,
which 1s not undergoing acceleration. This prescription for caleulation of the
emittance was carried out numerically, and compared with the 3-D version of the
WARP code. As can be seen, the emittance growth is tracked closely although
the higher frequency oscillatory behavior associated with lattice and mismatch
oscillations are, of course, not seen. (For small values of A(8p/po)?, or large values
of o/as the prescription overestimates the emittance growth, since the assumption
of complete phase-mixing between transitions is not achieved.)
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| | | 1
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] [} 1, i 4
1 2 3

¢z {mm-mrad)
400

200

Number of laps

Figure 3. Emittance growth in a racetrack. The parameters are oq = 729, & = 8°,
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p = 3.6m, Amafic?f2= 10MeVy (A{fp/ pu)g)”g = 0.0079. The length of each straight
section was 7.2 m.
Comparison to Other Recent Work

Recently, in ref. [4, 18], eavelope equations which include the same physics
(i.e. dispersion linear in 6p/po, and space charge with an assumed elliptical sym-
metry) as the moment equations (egs. 7,8) were derived. Venturini and Reiser
found a generalized emittance e which, when expressed in terms of the notation
of this paper can be written as:

€l = (Azp, An® — Azzl)(Ar Ac® — Ac'sh) — (Az% Azz' — AzemAzz,a)  (19)

By taking the derivative of ¢, and using egs. (7), it is straightforward to show
that e} 1is constant. By using the constancy of ez and ¢, two of the eight
first order moment equations could be eliminated, leaving six first order moment
equations, equivalent to the three second order equations of ref. [4]. Thus the
envelope equations in ref. [4] contain the same physical content as the previously
derived (ref. [1]) moment equations. In ref. [4], it is suggested that it would be
possible to eliminate much of the growth in emittance by matching the envelope
and the dispersion function D{s) = (Azép/po)/ AMp/ma)* (s defined in ref. [4]). This
is equivalent to finding the matched periodic solution of the moment equations
in the ring, and then constructing the section which injects the beam mto the
ring such that the values of the moments match those of the matched periodic
solution within the ring. In order to prevent mismatch oscillations of the centroid,
the centroid equations (8) must also be matched on the transition from straight
to bend. Another method (ref. [;L]]} of preventing emittance growth is by slowly
varying the radius of curvature, owing an adiabatic transition into the bend.

Also, recently in ref. [5], vertical and horizontal dispersion functions are de-
rved. The horizontal dispersion function derived by Lee is identical to that of
ref. [4], except that horizontal/vertical coupling is allowed such as can occur if
there are quadrupole rotation errors (see e.g. ref. [19]). The vertical dispersion
function is identical to that of a straight lattice, but again with the inclusion of
horizontal /vertical coupling. The envelope equations derived are not consistent
with the moment egs. (7,8) or the envelope equations of ref. [4], however, due to
additional approximations.

Self-consistent distributions

Recently, in ref. [20], a self-consistent KV solution to the Vlassov-Poisson
system in a bend was obtained. The solutions in the non-relativistic case are of
the form:
Flz, ', 0,9/ 6p/po) = Fo(Ho) expl=(6p/po)* /5] {20)
Here 2H1 = :r:'3+y’2+kgum!+k§uy2+2qq’1[mv§—2(::/pu)6p/pu. In ref. [20], generalizations
to the KV distribution were investigated of the form fi{H.) = foS(H—Hq). In ref.
[21] thermal equilibrium distributions of the form fu (H1) = foexp(—Hy/kT) have
been examined. Figure 4 illustrates the two distributions for the parameters
of the University of Maryland electron ring experiment (ref. [20]) (K3, = 17437
m~*, current )= 105 mA, energy = 10 keV, po = 1.82 m, with k/kg = 0.33, and
5p/Purms = 01

The moment eqs. require averages over zk; and yE, where £. and E, are
the electric field components due to space charge. Although in ref. [1], an ellipse
with uniform charge density was used to calculate B end E,, as pointed out
in ref, [7], the results also apply if the density is a function only of #*/Az* +
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a). KV distribution
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v?/Ay*, ie. constant on nested elliptical surfaces (ref. [4]). As can be seen for
the generalized KV distribution, the assumption of a density distribution that
is constant on nested ellipses is poor for the KV distribution, bui appears to
be a better appraximation for thermal equilibrium beams, which underlies the
calculation of asymptotic emittance growth above. This may, in part, explain
why the WARP simulation results agree well with the moment model.

b). Thermal equilibrium distribution
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Figure 4. Self consistent beam density distributions in bends. a) Surface plot
(upper) and contour plot (lower) of generalized KV distribution (ref. {20]); and
b) Thermal distribution (ref. [21])

Discussion
Emittance growth from sharp transitions, as discussed above, provides one
source of emittance growth. Others, such as misalignments of quadrupoles, field
strength errors, non-linear applied fields, etc., provide additional mechanisms

to degrade the emittance. In the recirculator design of ref. [6], an insertion-

and extraction region occurs over a 100 m long straight section, which gives the
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machine some of the features of the racetrack in that equilibration can occur on
passing from bend to straight and from straight to bend. Since the energy is
increasing on each lap it would be difficult to design the insertion/ extraction
section which is “matched” at all energies. Assuming abrupt transitions, use of
the moment equations together with the parameters of the beam at the exit of
the High Energy Ring of ref. [6] lead to an estimated emittance growth by a
factor of about 2. Since the entrance beam parameters lead to & much smaller
emittance growth, the normalized emittance will grow by less than a factor of 2.
This is within the emittance “budget” in the design of ref. [6]. It is also possible
that the transitions between bends and straights can be made gradual enough
so that equilibria are reached adiabatically, with little associated growth in the

normalized emiitance.

Conclusions

We have reviewed the derivation of moment equations in which focusing,
space charge, and dispersion in a bend, are included. We have shown that the
‘moment equations derived in ref. {1], using the average bend and continuous fo-
cusing approximatian, accurately predicts the initial amplitude and frequency of
emittance oscillations which occur at a sharp transition from a straight section to
a bend (ref. [3]). We have also reviewed the method of estimating the asymptotic
value of the emittance growth due to straight/bend mismatches from considera-
tions of transverse energy conservation as the beam equilibrates. By assuming the
transverse energy of the beam is conserved during the equilibration, and assum-
ing that the beam reaches equilibrium, and also that the equilibrium transverse
velocity spread is the same in « as it is in y we can calculate all moments and thus
the change in emittance. In racetracks, in which four such transitions are made
per lap, we have calculated the emittance growth under the assumption that the
equilibrium state is reached between cach transition. In small scale rings the
analytic result agreed well with 9.D and 3-D WARP simulations when o/so was
small and the velocity spread was sufficiently large (so that the assumption of
phase mixing between transitions was realized). In the High Energy Ring of ref.

|6}, this prescription yielded an emittance growth of less than a factor of 2.
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